Информация по реабилитации инвалида-колясочника, спинальника и др.
Информация по реабилитации инвалида - колясочника, спинальника и др.

Медицинская реабилитация Медицинская реабилитация

2. Структурные и функциональные принципы организации нервной системы

2.1. Взаимодействие сенсорных, моторных и мотивационных систем в переработке информации

Представьте себе действия человека, решившего выпить стакан чаю. Он подогревает на газовой или электрической плите воду, насыпает в чайник заварку, заливает её кипятком, ждёт положенное для заваривания время, наполняет стакан, добавляет в него сахар – весь порядок этих простых действий определяет нервная система.

Чтобы совершать нужные действия, необходима информация о расположении участвующих в них предметов, о их давлении на руки, о положении самих рук и тела в пространстве. Все эти сведения собирают специализированные только на приёме информации нервные клетки (нейроны). Полученную информацию они кодируют нервными импульсами и передают её другим нейронам для дальнейшей переработки. Объединение клеток, непосредственно получающих информацию, с нейронами, занятыми её последующей переработкой, образует сенсорную или чувствительную систему.

Другие нейроны специализируются на создании команд для производства необходимых движений, удержания нужных предметов в руке, сохранения или изменения положения туловища, ног. Готовые команды в виде нервных импульсов поступают к определённым мышцам: каждое движение происходит благодаря сокращению одних и расслаблению других мышц, их совместную деятельность координируют специальные нервные клетки. Совокупность нейронов, готовящих команды для мышц, и нервных клеток, непосредственно управляющих мышцами, образует моторную или двигательную систему.

Стоит задуматься и над обстоятельствами, побуждающими человека к тому или иному действию, например, к чаепитию. Была ли это жажда, вызванная предшествующей потерей жидкости, например, при обильном потении в бане, связано ли это поведение с желанием взбодрить себя или оно обусловлено приходом случайного гостя? Во всех случаях можно найти чем-то обусловленное побуждение к действию – мотивацию поведения. Любая же мотивация возникает как результат активности определённых структур мозга, которые можно объединить в мотивационную систему.

Несомненно, что разные системы взаимодействуют друг с другом. Обычно сенсорные системы активируют мотивационную, а она, в свою очередь, побуждает моторную систему создавать необходимые команды. Одновременно происходят изменения активности вегетативной нервной системы, регулирующей деятельность внутренних органов, которая должна быть согласована с моторной деятельностью. Все системы сотрудничают при любых, даже самых простых видах деятельности.

Сенсорные, моторные и мотивационные системы образованы большим количеством нейронов, объединённых друг с другом не случайно, а в строго определённом порядке, где каждый нейрон занимает своё место, как мелкая деталь в сложном механизме. Положение отдельных нейронов определяется генетическим кодом и в основном устанавливается ещё до рождения – во время внутриутробного развития. Функция нервной системы в целом заключается в восприятии информации, её переработке и передаче исполнительным органам, которыми могут быть мышцы (в том числе мышцы внутренних органов, сердечная мышца) и железы внешней секреции; особым способом нервная система взаимодействует с железами внутренней секреции – эндокринной системой. Конечной целью всей этой деятельности является обеспечение взаимодействия организма со средой, приспособление к постоянно меняющимся условиям существования (Рис. 2.1).

Взаимодействие сенсорных, моторных и мотивационных систем в переработке информации

2.2. Общие принципы анатомической организации нервной системы

Человеческий мозг представляет собой самый совершенный инструмент познания Вселенной и одновременно остаётся наименее познанным её объектом. В мозгу человека содержится более 1011 нервных клеток: легко подсчитать во сколько раз эта цифра превышает численность примерно 6 миллиардов живущих на Земле людей. Нервные клетки взаимодействуют друг с другом с помощью специальных контактных зон – синапсов. В мозгу человека их приблизительно 1014, т.е. больше, чем звёзд в нашей Галактике. Так, например, рядовой мотонейрон спинного мозга образует около 10 000 синапсов с другими нервными клетками. Архитектура мозга тоже далеко не проста, но к настоящему времени сформировались такие принципы изучения его деятельности, которые позволяют преодолевать пессимизм, навеваемый представленными здесь астрономическими цифрами.

Всю единую нервную систему принято подразделять на центральную нервную систему (ЦНС) и периферическую нервную систему (ПНС) – рис. 2.2. К ЦНС относят головной и спинной мозг, надёжно защищённые костями черепа, позвоночника и специальными мозговыми оболочками от возможных повреждений. К ПНС относятся периферические нервы и нервные сплетения или ганглии. ПНС разделяют на соматическую и вегетативную или автономную. В соматическую нервную систему включают приносящие информацию афферентные нейроны, тела которых находятся в спинальных ганглиях, а их отростки доставляют в ЦНС информацию от чувствительных окончаний в коже, мышцах и суставах. Кроме них к ПНС относят направляющиеся к мышцам отростки мотонейронов, тогда как тела этих клеток находятся в спинном мозгу и рассматриваются как часть ЦНС. Нейроны, уносящие информацию из ЦНС, называются эфферентными.

Общие принципы анатомической организации нервной системы

Вегетативная нервная система иннервирует гладкие мышцы внутренних органов и кровеносных сосудов, сердце и железы внешней секреции. В ней принято выделять три подсистемы: симпатическую, парасимпатическую и энтеральную или метасимпатическую. Симпатическая нервная система используется для мобилизации энергии, обеспечивающей физическую активность во время реакций борьбы и бегства, она участвует в развитии стресса. Парасимпатическая нервная система регулирует восстановительные процессы и способствует запасанию энергии в организме. Энтеральная нервная система в основном контролирует моторную деятельность кишечника.

ЦНС организована преимущественно симметрично относительно срединной плоскости: левая и правая её половины так же соответствуют друг другу, как левая и правая руки. Такую анатомическую организацию принято называть билатеральной. Для определения положения отдельных частей тела, конечностей, а также отдельных регионов мозга применяются специальные анатомические термины: краниальный – каудальный или краниальный – базальный (верхний – нижний), дорсальный – вентральный (к спине – к животу или же кзади – кпереди), медиальный – латеральный (ближе к середине – ближе к краю), проксимальный – дистальный (ближний – дальний) – рис. 2.3.

ЦНС

Поведение определяется специфическими связями между различными классами нейронов с определёнными функциями. Такие связи устанавливаются в процессе развития мозга в соответствии с генетической программой. На ранней стадии онтогенеза – процесса индивидуального развития организма клетки эмбриона дифференцируются на три зародышевых листка: эктодерму (наружный слой), энтодерму (внутренний слой) и мезодерму, располагающуюся между энтодермой и эктодермой. Все клетки центральной нервной системы образуются из эктодермы (Рис. 2.4). Сначала из эктодермальных клеток возникает общая популяция предшественников нейронов и глии. Затем незрелые нервные клетки перемещаются к месту своего дальнейшего развития в соответствии с основным планом формирования центральной нервной системы. Тогда же их аксоны начинают расти в определённых направлениях, указанных химическими сигналами, и постепенно вступают в контакт с клетками-мишенями. Роль химических сигналов могут выполнять гормоны, а также особые ростковые факторы, выделяемые некоторыми категориями клеток.

Роль химических сигналов

Перемещение незрелых клеток, рост их аксонов и выбор клеток-мишеней происходят не случайно, а в соответствии с генетической программой. Между аксонами и клетками-мишенями формируются синапсы, которые начинают действовать по мере созревания механизмов синтеза и выделения медиаторов, появления постсинаптических рецепторов, систем вторичных посредников. Следует отметить, что во время эмбрионального развития до половины предшественников погибают – это запрограммированная гибель, как запрограммирована и избыточная продукция клеток: таким путём происходит отбор наиболее эффективных вариантов развития. В итоге некоторая часть первоначально возникших синапсов в процессе развития исчезает, не выдержав конкуренции с действующими более эффективно (Рис. 2.5).

Перемещение незрелых клеток,

Поведение формируется на основе взаимодействия генов и окружающей среды. Само поведение не наследуется, но наследуется ДНК – молекулярный носитель генов. Гены кодируют белки, необходимые для развития, сохранения и регуляции важнейших переключений между нейронами, от таких белков непосредственно и зависит поведение. Упорядоченные переключения между нейронами, возникшие во время развития мозга, гарантируют стабильность его деятельности и видовую специфичность. Внешним проявлением сформированных к моменту рождения связей между нейронами являются рефлексы, благодаря которым параметры внутренней среды уравновешиваются с постоянно меняющимися условиями окружения. Рефлексы осуществляются с помощью стабильных переключений между афферентными, вставочными и эфферентными нейронами, и потому раздражение определённых рецепторов обязательно приводит к стереотипному двигательному или секреторному ответу. Ещё до рождения, к концу внутриутробного периода формируются механизмы пищеварительных, защитных и ориентировочных рефлексов. Они сохраняются на протяжении всей жизни, несмотря на естественную гибель многих нейронов и регулярное обновление молекул в сохраняющихся клетках.

Отдельные анатомические компоненты головного и спинного мозга показаны на рисунке 2.6.

Отдельные анатомические компоненты головного и спинного мозга

2.3. Спинной мозг

Спинной мозг имеет сегментарное строение и расположен в позвоночном канале, занимая в нём пространство от основания черепа до первого – второго поясничных позвонков. Рострально (от лат. rostrum – клюв, т.е. на переднем конце) он соединяется со стволом головного мозга, а каудально (от лат. cauda – хвост) не достигает конца позвоночного канала, оканчиваясь на границе первого и второго поясничных позвонков т.н. конским хвостом, образованным корешками поясничных и крестцовых сегментов. Разная длина позвоночника и спинного мозга объясняется тем, что во время развития и роста позвоночник удлиняется больше, чем спинной мозг. Отсутствие спинного мозга каудальнее второго поясничного позвонка позволяет выполнять там диагностическое пунктирование, чтобы взять для исследования спинномозговую жидкость.

Спинной мозг содержит 31 сегмент, от каждого сегмента в обе стороны идут спинномозговые нервы, образованные соединением задних чувствительных и передних двигательных корешков (Рис. 2.7).

Спинной мозг

Спинномозговые нервы выходят из позвоночного канала через межпозвонковые отверстия, затем их двигательные волокна направляются к мышцам, а чувствительные – к своим окончаниям в коже, мышцах, суставах и внутренних органах. Связь каждого сегмента с областью иннервации осуществляется по жёсткой топографической схеме: двигательные волокна управляют строго определёнными мышцами, а чувствительные получают информацию от определённых регионов: например, в коже это ограниченные участки или дерматомы (Рис. 2.8).

Спинной мозг

В спинном мозгу различают серое и белое вещество. В расположенном центрально сером веществе преобладают тела нервных клеток, тогда как белое вещество состоит преимущественно из множества отростков нейронов: по ним передаётся информация от одних сегментов спинного мозга к другим, от спинного мозга – к головному (восходящие пути) и наоборот, от головного мозга – к спинному (нисходящие пути).

Спинной мозг – филогенетически самая старая структура мозга и большинство нейронных соединений в нём очень устойчивы, разные в функциональном отношении нейроны идеально подогнаны друг к другу. Это позволяет спинному мозгу самостоятельно регулировать простейшие двигательные и вегетативные реакции, такие, например, как отдёргивание руки от горячего предмета или опорожнение мочевого пузыря при значительном растяжении его стенок Но даже при выполнении таких стандартных реакций спинной мозг находится под постоянным контролем головного мозга. Ему спинной мозг поставляет сенсорную информацию, а от него получает большинство двигательных программ и указания по части вегетативной регуляции.

2.4. Ствол мозга

Ствол мозга включает в себя три анатомические структуры: продолговатый мозг, мост и средний мозг (Рис. 2.9).

Ствол мозга

Рострально от спинного мозга находится продолговатый мозг, его прямым продолжением является мост, отграниченный резко очерченным выступом – он образован многочисленными волокнами, служащими для связи с мозжечком. Средний мозг расположен рострально от моста и включает в себя четверохолмие и ножки мозга, выходящие из моста и погружающиеся в большие полушария. В сером веществе ствола содержатся скопления нейронов, представляющих собой ядра двенадцати пар черепномозговых нервов, каждая из которых имеет свой порядковый номер (Таблица 2.1).

Рострально от спинного мозга находится продолговатый мозг

Как видно из таблицы, большинство черепномозговых нервов содержат как афферентные (т.е. чувствительные или сенсорные), так и эфферентные (двигательные) волокна. Ядра III, YII, IX и X нервов включают также нейроны парасимпатического отдела вегетативной нервной системы.

Двигательные и чувствительные нейроны ствола мозга представляют лишь незначительную часть его серого вещества. Большинство нейронов ствола специализируются на переработке информации, их скопления образуют многочисленные ядра, отростки которых могут направляться в спинной мозг, образуя нисходящие пути, либо связывать ствол с другими регионами головного мозга.

Белое вещество ствола состоит из отростков нервных клеток, образующих проводящие пути, которые подразделяются на восходящие и нисходящие. Восходящие пути от нейронов спинного мозга несут в головной мозг сенсорную информацию о тактильной (чувство прикосновения), температурной и болевой чувствительности, о положении конечностей и туловища (проприоцептивное ощущение), о деятельности внутренних органов. Нисходящие пути служат для проведения сигналов от высших регионов мозга и ствола к нейронам спинного мозга; по ним передаётся информация, нужная для управления движениями и деятельностью внутренних органов. Кроме того, с помощью нисходящих путей некоторые регионы головного мозга контролируют передачу сенсорной информации.

В медиальной части ствола на всём его протяжении содержится диффузная сеть нейронов, образующих т.н. ретикулярную формацию. Многочисленные ветвящиеся отростки её нейронов получают афферентную информацию от всех сенсорных систем, проводники которых проходят через ствол. Ретикулярная формация интегрирует сенсорные сигналы и, в соответствии с их характером, влияет на деятельность головного и спинного мозга. На головной мозг ретикулярная формация оказывает преимущественно активирующее влияние, её нисходящее влияние может быть как активирующим, так и тормозящим. Некоторые ядра ретикулярной формации выполняют узко специальные функции, такие, например, как регуляция артериального давления или контроль тонуса скелетных мышц, очень важную роль она играет в регуляции цикла сон-бодрствование и в формировании внимания.

Относящееся к среднему мозгу четверохолмие состоит из верхнего и нижнего двухолмия – это, соответственно, первичные зрительные и слуховые центры. На уровне верхнего двухолмия находится красное ядро (Рис. 2.10) – важная часть системы, управляющей моторными нейронами спинного мозга. Ещё одно физиологически важное скопление нейронов среднего мозга – чёрная субстанция, функционально связанная с подкорковыми ядрами (базальными ганглиями), находящимися в больших полушариях мозга. Нейроны серого вещества, расположенного вокруг водопровода, играют важную роль в восприятии боли: их отростки спускаются в спинной мозг, чтобы контролировать там передачу информации, связанной с болевой чувствительностью.

Относящееся к среднему мозгу четверохолмие состоит из верхнего и нижнего двухолмия

2.5. Мозжечок

Расположен дорсально относительно моста и продолговатого мозга, непосредственно над ним находятся затылочные доли большого мозга. Мозжечок получает сенсорную информацию от всех систем, возбуждающихся во время движения, а также от других регионов мозга, которые участвуют в создании двигательных программ. Передача информации к мозжечку и от него осуществляется по многочисленным нервным волокнам, образующим ножки мозжечка: три пары таких ножек анатомически и функционально соединяют мозжечок со стволом мозга.

Строение мозжечка довольно сложное: он имеет собственную кору, состоящую из огромного количества клеток нескольких разновидностей, а под корою, среди белого вещества проводящих волокон, располагаются несколько пар ядер мозжечка. Функция мозжечка состоит, в первую очередь, в формировании двигательных программ, необходимых для поддержания равновесия, регуляции силы и объёма движений: особенно важна роль мозжечка в регуляции быстрых движений.

2.6. Промежуточный мозг

Объединяет две соседние структуры мозга: зрительные бугры или таламус и гипоталамус (подбугорье). Зрительные бугры расположены по обе стороны третьего желудочка мозга и содержат большое количество переключательных ядер. Таламус является исключительно важным центром переработки почти всей сенсорной информации, это главная переключательная станция на пути передачи информации к коре мозга. Некоторые ядра таламуса получают сенсорную информацию с периферии, перерабатывают её и передают к определённым топографическим областям коры, которые специализируются на анализе только одного вида информации – зрительной, слуховой, соматосенсорной (воспринимающей сигналы от поверхности тела и от скелетных мышц). Таламические ядра такого типа называются специфическими или проекционными. Ядра другого типа, неспецифические, получают сигналы в основном от нейронов ретикулярной формации, такая информация не несёт сведений о специфических качествах действующих на организм раздражителей. Нейроны неспецифических ядер таламуса влияют на различные области коры. В свою очередь нейроны коры больших полушарий способны влиять на активность таламических нейронов, связи между таламусом и корой можно назвать двусторонними.

Наряду с сенсорными в таламусе существуют и моторные ядра: с помощью нейронов этих ядер устанавливаются связи между моторной корой, мозжечком и подкорковыми ядрами – три эти структуры мозга формируют двигательные программы. Ещё одна группа ядер таламуса необходима для того, чтобы обеспечить взаимодействие различных регионов коры друг с другом и с подкорковыми структурами. Такие ядра можно назвать ассоциативными, они нередко связаны друг с другом с помощью отростков своих нейронов. Благодаря своим многочисленным связям с различными регионами мозга таламус вовлекается в осуществление многих функций: например, при его участии лимбическая система формирует эмоции, гипоталамус управляет работой внутренних органов, а различные области коры осуществляют деятельность, связанную с психическими процессами.

Гипоталамус расположен в вентральной части промежуточного мозга непосредственно над гипофизом. Он является высшим центром регуляции вегетативных функций и координирует деятельность симпатического и парасимпатического отделов вегетативной нервной системы, согласует её с двигательной активностью. Он также управляет секрецией гормонов гипофиза, контролируя тем самым эндокринную регуляцию внутренних процессов. Некоторые из многочисленных ядер гипоталамуса регулируют водно-солевой баланс организма, температуру тела, чувство голода и насыщения, половое поведение. Гипоталамус является важнейшей мотивационной структурой мозга, в связи с этим он имеет прямое отношение к формированию эмоций и к организации целенаправленного поведения. Функции гипоталамуса обеспечиваются благодаря его двусторонним связям со многими регионами головного мозга и со спинным мозгом. Кроме того, многие нейроны гипоталамуса способны непосредственно реагировать на изменения внутренней среды организма.

2.7. Конечный мозг (полушария)

Симметрично расположенные полушария мозга соединяются друг с другом приблизительно 200 миллионами нервных волокон, образующих т.н. мозолистое тело. В каждом полушарии различают кору мозга и находящиеся в глубине полушарий подкорковые ядра: базальные ганглии, гиппокамп и миндалины мозга.

Базальные ганглии – объединяют полосатое тело, состоящее из хвостатого ядра и скорлупы, и бледный шар. Они получают входную информацию от всех областей коры и от ствола мозга, а через ядра таламуса и от мозжечка, и используют её для формирования двигательных программ. Помимо этого базальные ганглии принимают участие в познавательной деятельности мозга.

Гиппокамп и миндалины являются важными компонентами лимбической системы мозга, формирующей эмоции. Гиппокамп необходим для образования следов памяти, для трансформации кратковременной памяти в долговременную. Миндалины координируют вегетативные и эндокринные реакции, связанные с эмоциональными переживаниями

Наружная поверхность полушарий представлена корой – по количеству нервных клеток это самый большой регион мозга. Площадь этой поверхности, вписанной в ограниченное черепом пространство, увеличена за счёт многочисленных складок, выглядящих как извилины, разделённые бороздами. Толщина серого вещества мозговой коры варьирует между 1,5 – 5 мм, нейроны расположены в ней слоями. В большей части коры есть шесть слоёв, различающихся между собой по составу образующих каждый слой клеток.

На поверхности каждого полушария принято различать четыре доли (Рис. 2.11). Кпереди от глубокой центральной борозды расположены лобные доли, позади неё – теменные. Латеральные или сильвиевы борозды отделяют от лобных и теменных долей височные доли, а затылочно-теменные борозды отделяют затылочные доли от теменных и височных. Различные области коры взаимодействуют друг с другом посредством прямых связей или с помощью ядер таламуса. Существует хорошо развитая сеть проводящих путей, которые позволяют коре больших полушарий получать сигналы от подкорковых структур и, в свою очередь, передавать им необходимую информацию.

Конечный мозг (полушария)

В зависимости от выполняемых функций различные области коры подразделяются на сенсорные, моторные и ассоциативные. К сенсорным областям относятся: соматосенсорная кора, занимающая задние центральные извилины, зрительная кора, находящаяся в затылочных долях и слуховая кора, занимающая часть височных долей. Моторная кора находится в передних центральных извилинах и в примыкающих к этим извилинам регионах лобных долей. Ассоциативная кора занимает всю остальную поверхность мозга и подразделяется на префронтальную кору лобных долей, теменно-височно-затылочную (парието-темпорально-окципитальную) и лимбическую, к которой относят внутренние и нижние поверхности лобных долей, внутренние поверхности затылочных долей и нижние отделы височных долей. Префронтальная кора создаёт планы комплекса моторных действий, теменно-височно-затылочная интегрирует всю сенсорную информацию, а лимбическая участвует в формировании памяти, эмоций и определяет мотивационные аспекты поведения.

2.8. Защита мозга, цереброспинальная жидкость или ликвор

Мозг защищён от возможных повреждений надёжней, чем любой другой орган: кроме костного футляра из черепа и позвоночника существуют ещё три защитных оболочки. Это, во-первых, твёрдая наружная оболочка, местами соединённая с внутренней надкостницей костей черепа. Под нею находится паутинная оболочка, а непосредственно к мозгу примыкает мягкая оболочка. Между паутинной и мягкой оболочками существует пространство, заполненное цереброспинальной или спинномозговой жидкостью (ещё одно название для неё – ликвор). Подпаутинное пространство посредством расположенных в области продолговатого мозга отверстий сообщается с внутренними желудочками мозга, тоже заполненными ликвором (Рис. 2.12). В больших полушариях находятся боковые желудочки, которые соединяются с третьим желудочком, а он сообщается с четвёртым желудочком посредством водопровода. В свою очередь четвёртый желудочек соединяется с центральным каналом спинного мозга.

Защита мозга, цереброспинальная жидкость или ликвор

При таком распределении жидкости мозг оказывается взвешенным в ней и жидкость начинает играть роль гидравлического амортизатора, защищая нежную ткань от механических повреждений. Общее количество спинномозговой жидкости невелико – около 120-150 мл, из которых лишь 20-40 мл находятся в желудочках мозга. Ликвор содержит очень мало белка, а по солевому составу напоминает плазму крови. Мелкие кровеносные сосуды мозга постоянно выделяют небольшое количество такой жидкости, но примерно столько же её уходит в венозные синусы подпаутинного пространства: таким образом осуществляется непрерывная циркуляция ликвора. При некоторых заболеваниях эта циркуляция нарушается, что, в свою очередь, приводит к нарушениям деятельности ЦНС.

2.9. Кровоснабжение мозга и гематоэнцефалический барьер

Головной мозг снабжают кровью две сонные и две позвоночные артерии, которые, объединившись, образуют артериальный круг: ветви этого круга распределяются по всем регионам мозга. Нервные клетки способны работать только в условиях бесперебойной доставки кислорода и глюкозы, запасов которых у нейронов нет. Поэтому даже кратковременное прекращение притока крови к мозгу приводит к обмороку, при котором теряется сознание.

От артериальных сосудов, расположенных на поверхности мозга, отходят мелкие сосуды, которые проникают в ткань мозга и разделяются там на капилляры. Именно они служат непосредственным источником кислорода, глюкозы и незаменимых аминокислот. В то же время, многие содержащиеся в крови вещества не должны проникать в мозг, преградой для них является гематоэнцефалический барьер. Он образован, во-первых, особым устройством капилляров, эндотелиальные клетки которых уложены наподобие черепицы на крыше, а потому межклеточных щелей между ними нет. Во-вторых, капилляры мозга имеют необычайно плотную базальную мембрану и, в-третьих, примерно 88% поверхности этой мембраны покрывают отростки астроцитов – одной из разновидностей клеток глии (См. главу 3).

Гематоэнцефалический барьер препятствует диффузии всех крупных молекул, большинства продуктов патологических процессов и многих лекарств. В то же время потребление глюкозы и кислорода нейроны могут увеличивать по потребности – эти вещества проходят гематоэнцефалический барьер беспрепятственно.

2.10. Принципы организации функциональных систем мозга

Собрав и переработав всю сенсорную информацию, соответствующие области коры передают её ассоциативным полям, создающим замысел действий. В соответствии с этим замыслом моторные системы формируют команды для движений. Само решение о начале, как и об окончании действий, принимает мотивационная система, влияющая на выходную моторную активность, а через гипоталамус – и на состояние вегетативных функций. Несколько важных принципов определяют организацию этих функциональных систем.

1. Все проводящие пути топографически упорядочены. В каждой из систем, будь то сенсорная, моторная или мотивационная, каждый нейрон играет роль, предусмотренную генетическим сценарием. Проводящие пути, посредством которых отдельные нейроны объединяются в системы, так чётко структурированы топографически, что позволяют создавать нейронные карты.

Так, например, если на небольшом участке кожи от прикосновения возбудятся чувствительные окончания сенсорного нейрона, то этот нейрон передаст возбуждение через синапс следующему нейрону, который находится в продолговатом мозгу. Нейрон продолговатого мозга немедленно возбудит общающийся с ним нейрон таламуса, а тот передаст возбуждение в строго определённый участок задней центральной извилины. Если прикоснуться к соседнему участку кожи, то всё произойдёт в том же порядке, но участвовать в передаче информации будут другие нейроны, а поступит она в соседний участок коры.

По этому же принципу разные участки моторной коры используют "собственные" нейроны-посредники головного и спинного мозга для передачи команд строго определённым мышцам, среди которых одни должны сократиться, а другие в это же время расслабиться, чтобы получилось нужное движение. Контакты между взаимодействующими нейронам устанавливаются в процессе развития мозга по определённому генетическому замыслу.

Удивительная топографическая чёткость в организации сенсорных и моторных проводящих путей позволяет невропатологу точно определять область поражения мозга в зависимости от характера потерь в сенсорной и моторной деятельности.

Не только моторные и сенсорные системы, но и все взаимодействующие друг с другом структуры мозга и все их проводящие пути строго упорядочены.

2. В каждой сенсорной, моторной и мотивационной системе есть переключательные центры. Анатомически эти центры представлены переключательными ядрами – скоплениями тел нейронов, которые получают сигналы, перерабатывают их и распределяют по разным клеткам-мишеням. Переключательные ядра есть как в спинном, так и в головном мозгу, особенно много их в таламусе.

В ядрах происходит не простое переключение сигнала с одного нейрона на другой, эти сигналы определённым образом изменяются, а стало быть переключательные ядра являются и важными центрами переработки информации. Разные переключательные ядра содержат разные типы нейронов, среди которых полезно различать две отличающиеся группы:

а) Локальные интернейроны с относительно короткими отростками, которые не выходят за пределы самого переключательного ядра. Эти клетки участвуют в переработке сигналов посредством активации своих соседей или, наоборот, путём подавления их активности.

б) Проекционные интернейроны с длинными отростками, по которым выходной сигнал из переключательных ядер доставляется к другим регионам мозга.

3. В каждой системе используется несколько параллельных проводящих путей. В любой системе можно обнаружить ещё и подсистемы, каждая из которых решает собственную задачу. Так, например, в соматосенсорной системе разделены тактильное и болевое восприятие: для каждого вида чувствительности используются собственные проводящие пути.

В моторной системе выделяется т.н. пирамидный путь, который начинается от пирамидных клеток моторной коры и оканчивается в спинном мозгу: он крайне важен для управления тонкими движениями пальцев и кистей рук. Но, в то же время, положение тела или двигательные рефлексы спинного мозга контролируют другие проводящие пути моторной системы. Раздельные пути могут использоваться одновременно и тогда все подсистемы действуют согласованно.

4. Многие проводящие пути перекрещиваются. Большинство проводящих путей симметричны, но нередко они переходят на противоположную сторону. Так, например, пути передачи тактильного восприятия переходят слева направо и справа налево на уровне продолговатого мозга, а пути передачи болевой чувствительности перекрещиваются уже на уровне спинного мозга.

Движения левой и правой руки или ноги контролируют противоположные полушария мозга, перекрёст двигательных путей происходит на уровне продолговатого мозга. Самым большим перекрёстом является мозолистое тело: около 200 миллионов нервных волокон переносят сигналы от одного полушария к другому.

5. Разные области мозга специализируются на выполнении разных задач.

В первой половине ХХ века господствовало представление об эквипотенциальности мозга, т.е. о функциональной равноценности его регионов (это положение относили в первую очередь к коре мозга). В настоящее время подавляющее большинство исследователей убеждено в локализации определённых функций в определённых регионах мозга, причём это представление относится и к коре больших полушарий.

Так, например, любое ощущение возникает в результате переработки поступающей информации в строго определённых областях мозга: каждый вид информации перерабатывают специализированные рецепторы и переключательные центры, после чего она поступает к соответствующим областям представительства в коре: различным для тактильной, для зрительной, для слуховой чувствительности.

По тому же принципу организованы нейронные карты моторной системы: разные движения программируются разными регионами коры. В то же время следует учитывать, что похожая информация переносится и перерабатывается несколькими нейронными группами и несколькими нейронными путями параллельно.

6. Подобная информация перерабатывается параллельно. Принцип параллельной переработки информации означает, что любая важная сенсорная, моторная или другая интегративная функция всегда обеспечивается больше, чем одним нейронным путём. Наличие параллельно действующих путей позволяют компенсировать частичные повреждения какого-либо региона мозга, а со временем и сглаживать проявления нарушенной функции. Параллельная переработка информации отражает эволюционную стратегию надёжности, она существенно повышает функциональные возможности мозга.

По мнению А. Н. Лурия в принятии любого решения должен участвовать весь мозг, однако разные его отделы выполняют различные функции, в связи с чем можно выделить три важнейших блока. Во-первых, энергетический блок или блок регуляции тонуса и бодрствования, к которому относится ретикулярная формация мозгового ствола и функционально связанные с нею ядра таламуса. Этот блок принимает сенсорную информацию и фильтрует её, пропуская к коре больших полушарий лишь наиболее значимые сигналы. Одновременно он регулирует активность нейронов коры, подготавливая их к получению информации.

Во-вторых, это блок приёма, переработки и хранения информации, который представлен затылочными, височными и теменными областями коры. В него входят первичные и вторичные сенсорные зоны: зрительная, слуховая и соматосенсорная, а также ассоциативные регионы, в которых осуществляется интеграция всех видов сенсорной информации.

И, наконец, третий блок, представленный лобными областями коры, в задачи которого входит программирование, регуляция и контроль поведения

2.11. Элементарные операции мозга – основа психических процессов

Ни у кого не вызывает возражений представление о том, что разные формы поведения, связанные, например, с едой или с ходьбой, основываются на определённой активности мозга. Но человеческое поведение всегда связано с познавательными процессами, такими, как мышление, речь, творческая работа, а они невозможны без нормальной активности мозга: свидетельством тому являются многочисленные нарушения этих процессов, встречающиеся при поражениях мозга или при психических болезнях. Активность мозга лежит в основе поведения вообще, а не только в основе простых действий типа еды или ходьбы.

Ещё в XIX веке австрийский психиатр Карл Вернике (Wernicke K.) показал, что разные компоненты психических процессов относятся к разным регионам мозга, которые в определённой последовательности выполняют относительно простые операции, в результате которых формируется речь. Развитие этих идей в наше время привело к представлению о распределённой переработке информации.

Суть этого представления состоит в том, что отдельные регионы мозга не являются местом комплексной мыслительной деятельности, но каждый регион (в первую очередь различные регионы коры мозга) выполняет элементарные операции. Каждая подобная операция является одним из компонентов мышления, отдельные компоненты объединяются множеством сложно организованных нейронных путей. Каждый такой путь продублирован параллельными путями, что обеспечивает сохранность функции при возникновении ошибок в отдельном месте.

Все умственные процессы состоят из отдельных компонентов (можно, например, выделить восприятие, воспоминание, мышление, научение), но субъективно переживаются как целое. Эта целостность обеспечивается потому, что независимая и непрерывная переработка информации в нескольких регионах обязательно координируется межнейронными связями. Нелегко доказать: какие именно компоненты мыслительных процессов обеспечиваются определёнными нейронными путями или регионами мозга, но количество таких доказательств неуклонно возрастает.

Резюме

Содержащий огромное количество нейронов мозг человека анатомически и функционально очень чётко организован. Различные популяции нейронов, как и различные регионы мозга решают различные функциональные задачи. Межнейронные связи всегда топографически упорядочены и дублируются, что повышает их надёжность. Все функциональные системы мозга (сенсорные, моторные, мотивационные) постоянно взаимодействуют: на основе этой интеграции создаются самые разные формы поведения. Психические процессы тоже можно рассматривать как комплекс элементарных операций, выполняемых в разных регионах мозга, причём деятельность отдельных регионов постоянно координируется множеством межнейронных связей.

Вопросы для самоконтроля

16. В какой последовательности нервная система перерабатывает информацию?

А. Изменение поведения ® сенсорная система ® мотивационная система ® моторная система ® изменение среды;

Б. Сенсорная система ® мотивационная система ® изменение среды ® моторная система ® изменение поведения;

В. Изменение среды ® сенсорная система ® мотивационная система ® моторная система ® изменение поведения;

Г. Сенсорная система ® изменение среды ® мотивационная система ® моторная система ® изменение поведения;

Д. Изменение среды ® мотивационная система ® моторная система ® сенсорная система ® изменение поведения.

17. Какие нейроны называются афферентными?

А. Периферические; Б. Соматические; В. Вегетативные; Г. Уносящие информацию из ЦНС; Д. Приносящие информацию в ЦНС.

18. Каково смысловое значение термина "медиальный"?

А. Верхний; Б. Ближний; В. Ближе к животу; Г. Ближе к спине; Д. Ближе к середине.

19. Какой из указанных нервов является исключительно афферентным?

А. Обонятельный; Б. Тройничный; В. Лицевой; Г. Языкоглоточный; Д. Блуждающий.

20. При повреждении какого нерва может нарушиться процесс жевания?

А. Блокового; Б. Тройничного; В. Лицевого; Г. Языкоглоточного; Д. Блуждающего.

21. Какой из указанных нервов не содержит волокон парасимпатического отдела вегетативной нервной системы?

А. Глазодвигательный; Б. Лицевой; В. Языкоглоточный; Г. Блуждающий; Д. Подъязычный.

22. Назовите регион мозга, в котором находится чёрная субстанция:

А. Спинной мозг; Б. Продолговатый мозг; В. Мост; Г. Средний мозг; Д. Мозжечок.

23. Какая из перечисленных ниже структур играет особо важную роль в формировании внимания?

А. Ретикулярная формация; Б. Чёрная субстанция; В. Примыкающее к водопроводу серое вещество; Г. Красное ядро; Д. Ядро тройничного нерва.

24. Какие из перечисленных ниже ядер не могут находиться в таламусе?

А. Специфические; Б. Моторные; В. Ассоциативные; Г. Подкорковые; Д. Неспецифические.

25. Какая из указанных ниже структур принадлежит промежуточному мозгу?

А. Мост; Б. Средний мозг; В. Таламус; Г. Базальные ганглии; Д. Мозжечок.

26. Какая из указанных структур является важнейшей мотивационной областью мозга?

А. Таламус; Б. Гипоталамус; В. Средний мозг; Г. Гиппокамп; Д. Базальные ганглии.

27. Среди перечисленных ниже областей коры одна выделяется не по анатомическому, а по функциональному принципу; какая это область?

А. Ассоциативная; Б. Затылочная; В. Височная; Г. Теменная; Д. Лобная.

28. В чем состоит основная задача ассоциативных полей коры больших полушарий?

А. Принимать сенсорную информацию; Б. Перерабатывать сенсорную информацию; В. Определять начало и конец действий; Г. Создавать замысел действий; Д. Создавать двигательные команды.

29. Где существуют переключательные центры?

А. Только в сенсорной системе; Б. Только в моторной системе; В. Только в моторной и сенсорной системах; Г. Только в мотивационной системе; Д. В сенсорной, моторной и мотивационной системах.

30. Какую из указанных областей коры можно назвать лимбической?

А. Префронтальная кора лобных долей; Б. Внутренние и нижние поверхности лобных долей; В. Теменно-височно-затылочная кора; Г. Передние центральные извилины; Д. Задние центральные извилины.

Назад Оглавление Далее

Популярные материалы Популярные материалы